
Army Research Laboratory

Real-Time Radio Wave Propagation for Mobile Ad-Hoc

Network Emulation and Simulation Using General Purpose

Graphics Processing Units (GPGPUs)

by Brian J. Henz, David Richie, Song Jun Park, and Dale R. Shires

ARL-TR-6764 May 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated

by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-TR-6764 May 2014

Real-Time Radio Wave Propagation for Mobile Ad-Hoc
Network Emulation and Simulation Using General Purpose

Graphics Processing Units (GPGPUs)

Brian J. Henz, Song Jun Park, and Dale R. Shires

Computation and Information Sciences Directorate, ARL

David Richie

Brown Deer Technology, Forest Hill, MD 21050

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

May 2014 Final

Real-Time Radio Wave Propagation for Mobile Ad-Hoc Network Emulation and

Simulation Using General Purpose Graphics Processing Units (GPGPUs)

ARL-TR-6764

Approved for public release; distribution is unlimited.

June 2011 to June 2013

Brian J. Heinz, David Richie, Song Jun Park, and David R. Shires

U.S. Army Research Laboratory

ATTN: RDRL-CIM-C

Aberdeen Proving Ground, MD 21005

primary author’s email: <brian.j.henz.civ@mail.mil>

Large scale experimentation and analysis of mobile ad-hoc networks (MANETs) is an expensive and time consuming task.

Even with the best planning, the environment at the time of the experiment is unpredictable, making large scale controlled

experiments impossible to perform. By simulating the physical medium it is possible to create a repeatable environment.

Real-time radio wave propagation path loss calculations are a key component in creating a virtual environment for MANET

simulation, emulation and experimentation. There are many algorithms available for computing the radio wave propagation

path loss. In this paper we investigate the use of the Longley-Rice model computed using graphics processing units (GPUs).

The goal of this effort is to solve the Longley-Rice algorithm in real-time for thousands of transmitters and receivers. We will

discuss the choice of the Longley-Rice algorithm, algorithm modification for GPUs, precision issues and optimization. This

method will be demonstrated in the context of a dedicated high performance computing system for MANET simulation,

emulation and experimentation.

Mobile Ad-Hoc Network Emulation, General Purpose Graphics Processing Unit, RF Propagation Path loss

28

Brian J. Henz

410-278-6531Unclassified Unclassified Unclassified
UU

ii

Contents

List of Figures iv

List of Tables v

Acknowledgments vi

1. Introduction 1

2. Large Scale MANET Emulation 2

3. The Longley-Rice Algorithm for Real-Time Radio Wave Propagation Path Loss 3

4. Adapting the Longley-Rice Algorithm for Efficient Computation on Many-Core Archi-

tectures 5

4.1 Porting the ITM algorithm to GPU . 5

4.2 Numerical Stability and Consistency Across Architectures . 8

4.3 Performance and Scaling . 10

4.4 GPU Limitations . 13

5. Conclusions and Future Work 14

6. References 15

Distribution List 19

iii

List of Figures

Figure 1. Diagram of ITM routines developed for Brooke+/CUDA and OpenCL. 6

Figure 2. Plot of total ITM (Longley-Rice) calculation time versus number of transmit-

ters/receivers. The 0.5 s line represents the maximum time allowed for real-time com-

putations. 11

Figure 3. Efficiency of ITM algorithm OpenCL implementation on multiple AMD/ATI

GPU device families. 13

iv

List of Tables

Table 1. Consistency of the results calculated with various GPUs compared to the baseline

results from the CPU. 10

Table 2. Timing results for 256 transmitters/receivers using the OpenCL version of the

Longley-Rice algorithm run on AMD and NVIDIA GPUs.. 10

Table 3. Performance for AMD and NVIDIA GPUs as a function of block size in terms of

the number of point-to-point paths evaluated per kernel execution. Results show that

using a block size of 4096 provides sufficient work per kernel execution for efficient use

of the GPU. 12

Table 4. Performance comparison for LRPROP, the main compute kernel in ITM, using

Brook+ and OpenCL. 14

v

Acknowledgments

The authors would like to acknowledge the support received from the High Performance

Computing Modernization Program Office (HPCMPO) under the Mobile Network Modeling

Institute (MNMI). The authors would also like to acknowledge the support of the High

Performance Computing Modernization Program (HPCMP) High Performance Computing

Modernization Program Productivity Enhancement, Technology Transfer and Training (PETTT)

program.

vi

1. Introduction

Large scale testing, evaluation and analysis of mobile ad-hoc network (MANET) platforms is an

expensive proposal with a limited parameter space and repeatability under experimental

conditions (1). Therefore, simulation and emulation tools have been developed that provide

researchers with a controllable and repeatable environment for analysis of MANET platforms. In

particular, emulation holds great promise for limiting the amount of live experimentation required

for MANET platform development. Emulation provides for hardware-in-the-loop (HIL) testing

and analysis where the physical medium is replaced by a virtual environment and a physical or

simulated radio can be used with real applications. Much effort has been performed in this area

to make the virtual environment as physically meaningful as possible (1–3) but one limitation that

remains for real-time emulation is the accurate computation of the radio frequency (RF)

propagation path loss between radios.

MANET emulation has traditionally relied on either off-line link analysis including calculations

of RF propagation path loss (2) or real-time calculations with stochastic models (3). When

calculations are performed off-line it is assumed that the node mobility is known apriori. This is

a severe limitation when experiments may involve live components or mobility is controlled by a

third party application such as a force modeling simulation. One method to remove this

limitation is to use interpolation between known data points but the accuracy of this method is

limited by a number of factors. These factors include the physical size of the virtual

environment, machine memory for storing and accessing a look up table, signal phase, and fading

affects from small obstructions are not captured because of the computed grid size. Free-space

models are not a satisfactory solution either as they do not capture the effect of terrain, vegetation,

precipitation, or man-made structures on RF path loss.

The increasing fidelity of MANET emulations from packet-level to signal-level (4) analysis will

require fast and accurate modeling of the physical layer (5, 6). We present here a solution that

combines the accuracy of physics-based models for RF propagation with real-time performance.

Large scale mobile ad-hoc networks such as those deployed by the U.S. Army may have more

than 5000 devices in a given physical space. In order to compute the path loss experienced by

these devices in real-time we have chosen to develop the Longley-Rice model for use with

Graphics Processing Units (GPUs) (general purpose graphics processing units). The following

paper describes the algorithm, GPU development and use within a MANET emulator for the

emulation of large scale MANETs.

1

2. Large Scale MANET Emulation

The primary goal of the MANET modeling effort at the U.S. Army Research Laboratory (ARL) is

the development of a framework for large scale MANET emulations, namely up to 5000 emulated

devices. A large scale emulation environment provides a testbed for the research, development,

and evaluation of network algorithms, applications and devices in a controlled environment (7).

For instance, it is possible to use the Optimized Link State Routing daemon (OLSRd) ad-hoc

wireless mesh routing daemon (8) directly from the source code repository or modified for a

particular analysis. In addition to the use of unmodified software applications (9), this

environment allows for the integration of virtual devices into live experiments in order to augment

the testing parameters and the perceived traffic by physical network devices in the field. This

augmentation of live experiments enhances the experience of testers and increases the degrees of

freedom that can be evaluated in an experiment. The achievement of these goals for large scale

MANET emulations and live experiment integration requires the bridging of a number of

technical gaps. One of the bridging technologies presented here is the development of a real-time

RF propagation computation and the hi-fidelity software emulation of multiple MANET

waveforms.

Providing an accurately modeled physical medium for RF propagation is a requirement for

emulating MANETs with confidence. A worst case link analysis for a MANET scenario includes

all point-to-point links with continuously updated RF path loss information. For a 256

transceiver emulation this would require over 65,000 RF path loss calculations per second. An

efficient CPU implementation of the Longley-Rice model, as will be discussed later, is about 20

times slower than the GPU implementation on an NVIDIA 2070 device using OpenCL. This

performance discrepancy is significant for MANET emulation since the radio models require a

general purpose CPU to host a full operating system for execution. The GPU can be hosted on

the same commodity motherboard and perform the path loss calculations independently from the

emulated network stack.

2

3. The Longley-Rice Algorithm for Real-Time Radio Wave Propagation

Path Loss

RF wave propagation models play an essential role in the planning, analysis and optimization of

radio networks (1, 10–13). For instance, coverage and interference estimates of network

configurations are based on field strength predictions, routing is also highly dependent upon

computed path loss data (1). Approaches for field strength prediction can be divided into

semi-empirical and ray-optical models. For example, the semi-empirical

COST-Walfisch-Ikegami model (14) estimates the received power predominantly on the basis of

frequency and distance to the transmitter. Ray-optical (15) approaches identify ray paths through

the scene, based on wave guiding effects like reflection and diffraction. Semi-empirical

algorithms usually offer fast computation times but suffer from inherent low prediction quality.

Ray-optical algorithms feature a higher prediction quality at the cost of higher computation times.

Emulation of MANETs must execute in real-time in order to provide HIL compatibility. At the

physical layer, the interactions between devices is governed by the RF propagation characteristics

of the environment. It is therefore imperative that the RF path loss data must be computed and

provided to the emulation environment in real-time. The algorithms used to compute path loss

must be computed in real-time for each of the possible propagation paths. Initially assuming that

all devices in a single emulation scenario are within propagation range of each other the

computational complexity of the RF path loss algorithm is O(n2), where n is the number of

transmitter/receiver device pairs in the scenario. Multiple methods exist for computing the RF

path loss data including both (semi-) empirical and ray-optical models. Both methods require a

large number of floating point operations, necessitating a high floating point operations (FLOP)

rate for real-time path loss predictions.

Recently, the use of GPUs have been identified as a solution to provide the raw floating point

performance (16) required to compute the RF propagation path loss in real-time (12, 13).

Originally, GPUs were developed in order to quickly compute rasterization which requires a large

number of simple floating point operations. This targeted design is the reason that the

architecture has been able to exceed the performance of CPU architectures for raw FLOP rates

(17). In addition to the raw floating point performance of the GPUs, the GPUs are tightly

coupled with the underlying system including the network interface cards (NIC). High bandwidth

communication through the PCI Express interface to the NIC provides a path for wireless device

positions to be read in and RF path loss data to be pushed out, thus allowing for a tight coupling

3

between the MANET emulation environment and the RF path loss calculations. The MANET

emulation environment used here is Extendable Mobile Ad-hoc Network Emulator (EMANE)

from DRS (formerly Cengen Labs) (18). In EMANE, the GPS locations of all mobile radios are

transmitted over a multicast group that is monitored by the emulated devices for self-location.

The RF propagation calculation joins this multicast group and collects all of the radio positions

and computes results as fast as possible. Typically the GPS coordinates are transmitted on 1 s

intervals. For a 1 s transmit interval, it can be safely assumed that the GPU calculation should

take less that 0.5 s in order to allow time for the broadcasting of results to the mobile radios, and

the collection of updated positions for a subsequent calculation. The calculation cost for a

particular scenario is very consistent as the number of terrain profile points remains constant for

each point-to-point calculation, regardless of distance, and the number of radios also remains

constant. Under these conditions and the fact that the amount of data copied to and from the

network and across the PCI bridge is fairly small, e.g. with 5000 radios we have 960 kb/s of

position data and 800 Mb/s of single precision path loss data distributed across 114 GPU host

nodes in our host system. Relative to the NIC and PCI Express bandwidths of 10 Gb/s and about

32 Gb/s, respectively, a 0.5 s buffer for these actions is conservative. If, by chance a GPS update

is missed because of a delay in processing or communication, then the system will just wait for

the next update and continue from that point. This is acceptable because 1 s GPS updates are

fairly frequent for path loss considerations in non-urban scenarios.

Although a number of path loss algorithms exist, we down-selected the methods based on the

criteria we had for a non-urban environment and a large number of wireless devices. In order to

provide a robust path loss calculation for non-urban environments we selected the Longley-Rice

model. The Longley-Rice model is capable of predicting path loss in an area or point to point

mode, with the later used here. Longley-Rice is designed for frequencies between 20 MHz and

20 GHz and for path lengths between 1 km and 2000 km (19), both within our scenario operating

ranges. In point-to-point mode the model considers input parameters such as distance, antenna

height, surface reflectivity, climate and the terrain profile between the transmitter and receiver

(20). The rest of the environmental parameters can be transient or fixed upon initialization. This

implementation is robust in that it allows all parameters to change each time the GPU kernel is

executed.

In order to meet the real-time requirements for RF propagation path loss estimation suitable for

network emulation, an implementation of the Longley-Rice (21) Irregular Terrain Model (ITM)

was developed for GPUs. This implementation is based on the open-source C implementation

available from the U.S. Department of Commerce (22). The code development required

significant re-factoring to employ algorithms suitable for the fine-grained parallelism of modern

4

GPU architectures. Two algorithms account for a significant portion of the overall execution

time, namely the point-to-point path loss calculation and the digital terrain extraction algorithm.

Both of these algorithms have been ported to the GPU for acceleration. This allows the entire

propagation path loss calculation to be performed on a GPU with the GPS coordinates of each

radio as an input, and the path loss matrix as the output.

4. Adapting the Longley-Rice Algorithm for Efficient Computation on

Many-Core Architectures

Algorithm development for GPUs and many-core architectures, in general, is a difficult task when

attempting to achieve acceptable performance. Algorithms for modern CPUs assume a well

managed memory hierarchy with multiple levels of cache to keep the computing units supplied

with data for calculations. GPUs and many-core architectures such as the Bulldozer processor

from AMD typically have less dedicated memory per compute core and data layouts that must be

user-managed in order to keep the computing units from becoming starved for data. In this

section we discuss the details of developing the Longley-Rice algorithm for a many-core

processor, specifically targeting GPUs.

4.1 Porting the ITM algorithm to GPU

Significant challenges were encountered in the initial development of the GPU algorithm based

on the serial CPU algorithm. First, the C code implementation of the serial algorithm closely

reflects the original FORTRAN implementation and contained many basic constructs ill-suited to

modern processors, which required substantial reformulation. An example of this reformulation

was the replacement of nested conditional control flow inside inner loops. Second, the original

double-precision algorithm had to be converted to single-precision raising the issue of numerical

stability within the complex formulas that comprise the Longley-Rice algorithm. There exists a

significant, i.e., greater than 100%, performance disparity between single- and double-precision

with modern GPUs, which will likely continue going forward. Further, even though high-end

GPUs now provide a substantial double-precision capability, this does not extend to complicated

transcendental functions which are pervasive within the Longley-Rice algorithm.

Initial development of the Longley-Rice algorithm focused on the ITM algorithm LRPROP

routine. LRPROP was implemented in both the Brook+ and CUDA languages. Subsequently,

5

the OpenCL1 API was released for the development of architecture independent applications.

OpenCLTM is an industry standard programming API for parallel programming of heterogeneous

computing platforms (23). The use of OpenCL ensures portability across modern multi-core and

many-core processors and specifically supports the use of GPUs from AMD and NVIDIA, as well

as CPUs from Intel and AMD. ITM was developed for GPUs using the standard compute layer

(STDCL) (24) API. STDCL leverages OpenCL and presents it in a more efficient and simplified

interface designed for the development of complex high performance computing (HPC)

applications.

The ITM path loss calculation is implemented using 10 OpenCL kernels as shown in figure 1,

including the five kernels that make up LRPROP that were also implemented in the architecture

specific Brooke+ and CUDA languages. The kernels are executed in succession using a digital

terrain map pre-loaded into the main GPU memory attached to the GPU co-processors.

Initialization of the compute cycle begins when and array of transceiver positions is supplied

through the network interface, or from a calling library for stand-alone applications. Following

the transfer of position data to the GPU, the ITM algorithm is executed. Details of the

computation performed and result distribution through the return of a path loss matrix for all

transmitter/receiver pairs follows.

� � � � � � � � �

� 	
 � � 	 � �

� � � � �

� � � � �

� � � � � �

� � � � ! " # $ $ # %

& ' (

) * + , ,

- . / - 0

1 2 3 4

5 6 7 7 6 8

9 : ; < = > ? @ A B C ? D E

F A B G H ? E E I J K L

M N O P Q R S T U V W X S
Y Z O Y [Q [\ W O P

] ^ _ ` a b _ c _ d _ e f ` d g h `
i j k l l m n o p k q r
s t u v w w x y
z { | } ~ � � � � � | � � �
� � � � � � � � � � � � � � � �

� ¡ � ¢ �

£ ¤ ¥ ¥ ¦ § ¨ © ¥ ª « § ¬ © ª © ® ª ¯ ª ¥ ° ± © ¯ ± ²

³ ´ µ ¶ · ¸ ¹ º ¹ ¶ ¹ » ¼ ¸ » ½ » ¾ µ ¶ µ ½ ¿

ÀÁ
ÂÂ
ÃÄ
ÅÆ
ÇÈ
ÉÊË

ÌÍ
ÆÎ

Figure 1. Diagram of ITM routines developed for

Brooke+/CUDA and OpenCL.

1OpenCL is a trademark of Apply Inc. used by permission by Khronos.

6

In figure 1 the first kernel started, READ_PATH, is started to extract the path data from the

elevation map for each transmitter/receiver pair using the preloaded digital terrain data. The

result is a segmented height profile along the path connecting the transmitter and receiver,

including a correction for the curvature of the earth. The path data for each transmitter/receiver

pair is subsequently stored in an array located in global GPU memory and made available for the

next stage of the ITM algorithm. The array of height profiles is pre-processed with three kernels,

namely PRO_QLRPS, QLRPF, and QLRPF_BOTTOM that were re-factored from the original

ITM C code implementation. The results are multiple arrays of per-path quantities required in

the next stages of the computation.

The computational core of the Longley-Rice algorithm in LRPROP, is broken down into

sub-calculations for different physical effects that impact the total RF path loss value. The

kernels ADIFF, ASCAT, and ALOS implement models for diffraction, scatter, and line-of-sight

attenuation, respectively. The final kernel AVAR4 implements the total attenuation and

variability computation that results in the final path loss estimate for each transmitter/receiver

pair. The result of the computation is a matrix of path loss values generated in stripes across

multiple GPUs per node, with each node responsible for a subset of the complete matrix of

transmitter/receiver pairs. After computation, the path loss data is distributed to the radio models

via multicast messages that contain an array of values for the neighboring nodes. The RF path

loss calculations ignore the direction of the antenna and the final RF path loss value must be

augmented with antenna gain information based on directional data provided by EMANE.

Efficient distribution of computational load to the GPU is performed by partitioning the

point-to-point paths into blocks of predefined size. For currently available hardware and our

scenarios, a block size of 4096 paths is used. This distribution method is capable of treating

arbitrary numbers of radios by performing computations over multiple blocks and padding the

blocks when the number of paths is not commensurate with block size. We have considered two

mechanisms for treating systems with multiple GPUs. For OpenCL a multidevice context can be

used with the work being distributed and evaluated on multiple GPUs concurrently.

Alternatively, the features of STDCL that enable the transparent use of multiple devices can be

used to divide the work across independent processes for very a large system. No performance

advantage of one method over the other is anticipated as the number of kernels executed on each

device and the memory accesses will remain consistent. Since we have access to multiple nodes,

each with multiple GPUs, we have focused our attention on the latter method.

7

4.2 Numerical Stability and Consistency Across Architectures

As noted previously, single precision floating point computations are used on the GPU in order to

achieve maximum performance, the trade-off being possibly decreased accuracy. Since the

Longley-Rice model uses statistical estimates to compute the variability of signal pathloss due to

situation, time and location. The actual received signal is expected to deviate from the computed

value due to these variables but the model still provides an reasonable estimate. Therefore, small

variations due to single versus double precision are not expected to invalidate the computed

results for its intended purpose of estimating signal loss over irregular terrain. For the

Longley-Rice algorithm there are a large number of transcendental functions that do not have a

double precision computation available. Algorithm development with single-precision accuracy

raised concerns with numerical stability and consistency, especially, in the context of forward and

inverse transcendental functions with small angles. Whereas it is possible, although not

guaranteed, that reasonably precise consistency might be expected across these architectures for

simple algorithms based on multiply-add operations, the complexity and reliance upon complex

transcendental operations makes exact agreement here unlikely. Factors impacting the difference

in results include extended bit precision used in some operations, differences in rounding

behavior, and differences in the software implementation of complex operations. Additionally,

the GPU implementation introduces the possibility of order-of-operation effects as a result of the

fine-grain parallelism within some kernels.

An issue identified across many elements of the algorithm was the repeated use of forward and

inverse transcendentals at small angles. An example of this small-angle effect is the use of great

circle calculations over small areas in which the correction due to the curvature of the earth was

small. A serious numerical instability was identified with the pattern of successive operations of

cosine, followed by a minor calculation, and then followed by an arc cosine. Such patterns had

the potential to produce an intermediate value slightly greater than 1.0 and a final result of NaN.

The effects of this numerical instability can be complicated and the impact on the final path loss

can range from a small error to an undefined result (NaN). In some cases a less severe numerical

error results from differences in transcendental functions at limiting values. Secondary impacts

were also identified, for example differences in the projected map location within the digital

terrain map can introduce differences in elevation within the extracted height profile that only

impact results by changing the statistical metrics calculated for these height profiles. The

solution to many of these issues was to re factor the formulas found in the original reference

implementation and introduce forms with greater stability at the limiting ranges found within the

8

typical uses cases. Consider the original distance calculation, that begin by first calculating,

a =cos(90 − lat2) ∗ cos(90 − lat1)+

sin(90 − lat2) ∗ sin(90 − lat1)∗

cos(lon2 − lon1)

(1)

Where lat1, lon1 refer to the transmitter coordinates and lat2, lon2 refer to the receiver

coordinates. Using the value a computed in equation 1,

b =arccos (a) (2)

Where for the earth,

distance = Rearth ∗ b (3)

Here Rearth is the radius of the earth. For small angles this calculation can be unstable using

single precision so we used the following approximation,

∆lon =lon2 − lon1 (4a)

∆lat =lat2 − lat1 (4b)

a =(sin(∆lat))2 +

cos(lat1) ∗ cos(lat2) ∗

(

sin

(

∆lon

2

))2 (5)

b =2 ∗ arcsin(min(1,
√

a)) (6)

Distance is then computed using equation 3. Efforts to improve the numerical stability resulted

in good agreement between a CPU and AMD Cypress and Cayman GPUs. We take as an

assumption that the CPU hardware provides a reasonable baseline for comparison since the

implementation of all relevant math operations are well established, more thoroughly tested, and

provide better edge cases relative to GPUs. Results for the NVIDIA Fermi GPU exhibited

notable discrepancies, with a complete understanding of the cause remaining for further

investigation. Numerical consistency was tested across these architectures using a simple

synthetic test case involving an 8 by 8 uniform grid of radio transceivers over a digital elevation

9

map (DEM) with 1.2 million elevation points. Table 1 shows the percentage of the point-to-point

path loss results calculated on a particular GPU architecture that agree with the results calculated

on the CPU to within a tolerance of 1 dB, 2 dB, and 10 dB, respectively.

Table 1. Consistency of the results calculated with

various GPUs compared to the baseline

results from the CPU.

Processor <1 dB <2 dB <10 dB

ATI Radeon HD 5870 98 % 99 % 100 %

AMD Radeon HD 6970 98 % 99 % 100 %

NVIDIA Tesla C2070 86 % 90 % 94 %

As observed in table 1, the ATI/AMD devices provide a result more consistent with the baseline

CPU. We have been unable to determine at this time the cause of the discrepancy between the two

vendors but the ATI/AMD solution consistently provided results more consistent with the CPU

baseline calculations.

4.3 Performance and Scaling

In this section we explore the achieved Longley-Rice algorithm performance on several GPU

platforms, in the process comparing vendor solutions from ATI/AMD and NVIDIA. It should be

noted again that the Longley-Rice algorithm is heavily dependent upon transcendental functions

and not on more typical multiply add (MADD) operations. This is an important point as the

reported FLOP rates are for MADD operations, and transcendental function performance is not

directly related. The timing results in table 2 list the wall clock time required for three different

architectures to compute all point-to-point RF path loss values using the Longley-Rice algorithm.

Table 2. Timing results for 256

transmitters/receivers using

the OpenCL version of the

Longley-Rice algorithm

run on AMD and NVIDIA

GPUs.

Processor Time (s)

ATI Radeon HD 5870 0.72

AMD Radeon HD 6970 0.55

NVIDIA Tesla C2070 0.39

10

As illustrated in table 2 using the current ITM implementation, all of the tested GPU architectures

are capable of providing computed RF path loss results for 256 transceivers, or 65,536

point-to-point calculations, in less than 1 s on a single GPU device. For 256 radios, the fastest

time to solution is reported as 0.39 s using an NVIDIA C2070 (25) as compared with 0.72 s and

0.55 s using an ATI Radeon HD 5870 and AMD Radeon HD 6970, respectively (26). Complete

performance results are plotted in figure 2 for a range of 32 to 1024 transceivers.

Number of Transmitters (Receivers)

C
a

lc
u

la
ti

o
n

 T
im

e
 (

s
)

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

10
2

10
1

10
0

10
1

AMD Radeon HD 6970
NVIDIA C2070

0.5 Second Line

Figure 2. Plot of total ITM (Longley-Rice) calculation

time versus number of transmitters/receivers.

The 0.5 s line represents the maximum time

allowed for real-time computations.

In figure 2 a line is drawn at 0.5 s to show approximately the number of transceivers a particular

GPU is capable of considering in realtime. It is interesting to note that the theoretical peak FLOP

rate of the AMD Radeon HD 6970 is 2.703 TFLOPs and the NVIDIA C2070 is only 1.288

TFLOPs. Conversely, the number of radios supported by the Longley-Rice algorithm in less than

0.5 s of computation time is higher for the NVIDIA GPU. This apparent inefficiency in the AMD

hardware is due to the fact that many of the floating-point operations in the Longley-Rice

algorithm are transcendental functions such as cosine, sine, tangent, co secant, etc., The

performance of a specific architecture on the Longley-Rice algorithm is therefore not easily

predicted by theoretical peak performance. Additionally, the memory access patterns within the

kernels are nontrivial, and this will also contribute to the observed performance.

Performance of complex multikernel algorithms can be impacted by many factors including pure

computational load, memory access, host-device data transfer, and kernel launch latency. In the

11

case of the 10 kernels in the ITM implementation, each individual kernel shows a very low

execution time when directly measured in a fully blocking mode of operation. In order to

investigate whether the ITM implementation is effectively using the GPU compute capability, the

stripe size over which the computation is distributed was varied to observe the effect of changing

the amount of work performed per kernel execution. Initially the stripe size was set at 4096 with

subsequent test cases of 2048 and 1024 point-to-point calculations. The results in table 3 show

an improvement on the order of 10% when increasing the block size from 1024 to 4096, thus

providing more work per kernel execution. This indicates that the block size of 4096 is

performing only slightly better than the block size of 2048, therefore increasing the block size

further would yield diminishing returns. Increasing the block size further would also decrease

the efficiency of performing calculations where the number of point-to-point paths was not

commensurate with block size. For example, with a workload of 65,536 point-to-point

calculations, increasing the block size will approach the size of the work load resulting in an

efficient calculation when the work load is not a multiple of the block size.

Table 3. Performance for AMD and NVIDIA

GPUs as a function of block size in terms

of the number of point-to-point paths

evaluated per kernel execution. Results

show that using a block size of 4096

provides sufficient work per kernel

execution for efficient use of the GPU.

Processor Block Size Time (s)

ATI Radeon HD 5870 1024 83

ATI Radeon HD 5870 2048 75

ATI Radeon HD 5870 4096 72

AMD Radeon HD 6970 1024 65

AMD Radeon HD 6970 2048 58

AMD Radeon HD 6970 4096 55

NVIDIA Tesla C2070 1024 42

NVIDIA Tesla C2070 2048 40

NVIDIA Tesla C2070 4096 39

Intra-node and inter-node scalability for small numbers of GPUs was evaluated here under several

configurations using available resources that included a system with four ATI Radeon HD

4870X2 graphics cards with a total of eight GPUs and another system with an ATI Radeon HD

5870 and 5970 with a total of three GPUs. Note that with the dual GPU graphics cards, a PCIe

12

interface is shared between pairs of devices. The scalability results are shown in figure 3 and

show reasonable scalability using a multidevice OpenCL context. Scalability to very large

systems is being investigated on a large 456-GPU cluster and will be reported elsewhere.

Number of GPGPU Devices per Node

E
ff

ic
ie

n
c

y

0 1 2 3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

1.1

Radeon R700 Series (Efficiency)

Evergreen Series (Efficiency)

Figure 3. Efficiency of ITM algorithm OpenCL

implementation on multiple AMD/ATI GPU

device families.

4.4 GPU Limitations

When using GPUs for a complex computational task, a number of limitations must be observed.

For instance, the Longley-Rice algorithm includes a high proportion of transcendental

computations. GPUs are designed to perform MADD operations very efficiently, whereas the

number of computational units on ATI/AMD devices dedicated to complex mathematical

functions is approximately 20%–25% of the GPU capacity. In addition the memory access

patterns are important because the ratio of memory access to computation cost is much higher for

a general CPU architecture. A third factor important for this effort is the number and work load

of computational kernels. The final factor considered is the language choice that affects

performance and portability, table 4.

13

Table 4. Performance comparison for

LRPROP, the main compute kernel in

ITM, using Brook+ and OpenCL.

Architecture Language Time (s)

ATI Radeon HD 4870 Brook+ 0.02

ATI Radeon HD 5870 Brook+ 0.01

ATI Radeon HD 4870 OpenCL 3.50

ATI Radeon HD 5870 OpenCL 0.40

5. Conclusions and Future Work

Using GPUs and a portable standard for parallel computing systems, namely OpenCL, it has been

possible to develop a Longley-Rice ITM implementation for real-time RF path loss computations

that support MANET emulation. This has in turn provided ARL with the capability to augment

live exercises, integrate MANET emulation with force model simulations and to drive

programmable attenuators for laboratory experimentation with physical devices. Prior to the

development of these capabilities with GPUs the wireless node mobility and path loss needed to

either be computed apriori or use a large number of (i.e., 10,000) CPU cores, dedicated to path

loss calculation.

A number of issues have been overcome including the use of reduced precision, through the use

of alternative calculations for edge cases, and the issue of load distribution and communication

costs through the creation of computation blocks that limit kernel calls and minimize wasted

computation cycles. The resolution of these issues enables the emulation framework at ARL to

provide real-time situational awareness data to live field exercises and will have applicability to

the integration with future force modeling simulations. Continuing developments include

improving predictions through the addition of foliage effects (27, 28) and ITM area calculations.

14

6. References

1. Schmitz A.; Wenig, M. The Effect of the Radio Wave Propagation Model in mobile Ad Hoc

Networks. In The 9th ACM/IEEE International Symposium on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (MSWiM 2006), October 2006.

2. Kaplan, M. A.; Chen, T.; Fecko, M. A.; Gurung, P.; Hokelek, I.; Samtani, S.; Wong, L.; Patel,

M.; Staikos, A.; Greear, B. Realistic Wireless Emulation for Performance Evaluation of

Tactical MANET Protocols. In IEEE Military Communications Conference (MILCOM),

October 2009.

3. Nitsche, T.; Fuhrmann, T. A Tool for Raytracing Based Radio Channel Simulation. In

SIMUTools March 2010.

4. Andelfinger, P.; Mittag, J.; Hartenstein, H. GPU-based Architectures and Their Benefit for

Accurate and Efficient Wireless Network Simulations. In IEEE MASCOTS, July 2011.

5. Eltahir, I. The Impact of Different Radio Propagation Models for Mobile Ad hoc NETworks

(MANET) in Urban Area Environment. In Wireless Broadband and Ultra Wideband

Communications, 2007. AusWireless 2007. The 2nd International Conference on, August

2007.

6. Stepanov, I.; Rothermel, K. On The Impact of a More Realistic Physical Layer on MANET

Simulations Results. Ad Hoc Networks 2008, 6 (1), 61–78.

7. Grøtli, E. I.; Johansen, T. A. Path Planning for UAVs Under Communication Constraints

Using SPLAT! and MILP. J. Intell. Robotics Syst. 2012, 65 (1–4), 265–282.

8. Tønnesen, A. Impementing and Extending the Optimized Link State Routing Protocol.

University of Oslo, 2004.

9. Henz, B. J.; Parker, T.; Richie, D. A.; Marvel, L. Large Scale MANET Emulations Using

U.S. Army Waveforms with Application: VoIP. In IEEE Military Communications

Conference (MILCOM), November 2011.

10. Rick, T.; Mathar, R. Fast Edge-Diffraction-Based Radio Wave Propagation Model for

Graphics Hardware Antennas, 2007. INICA ’07. 2nd International ITG Conference on,

March 2007.

15

11. Judd, G.; Steenkiste, P. Design and Implementation of an RF Front End for Physical Layer

Wireless Network Emulation. In IEEE 65th Vehicular Technology Conference (VTC2007),

April 2007.

12. Catrein, D.; Reyer, M.; Rick, T. Accelerating Radio Wave Propagation Predictions by

Implementation on Graphics Hardware. In Vehicular Technology Conference, 2007.

VTC2007-Spring. IEEE 65th, April 2007.

13. Michéa, D.; Komatitsch, D. Accelerating a Three-Dimensional Finite-Difference Wave

Propagation Code Using GPU Graphics Cards. Geophysical Journal International 2010, 182

(1), 389–402.

14. Damasso, E., Ed. Digital Mobile Radio Towards Future Generation Systems; Office for

Official Publications of the European Communities: Luxembourg, 1999.

15. Bertoni, H. L. Radio Propagation for Modern Wireless Systems; Prentice Hall Professional

Technical Reference: 1999.

16. Song, Y.; Akoglu, A. Parallel Implementation of the Irregular Terrain Model (ITM) for Radio

Transmission Loss Prediction Using GPU and Cell BE Processors. IEEE Trans. Parallel

Distrib. Syst. 2011, 22, 1276–1283.

17. NVIDIA CUDA C Programming Guide, Version 4.0, 2011.

18. Various, EMANE Developer Manual 0.7.3. DRS CenGen, LLC, 2012.

19. Hufford, G.; Longley, A.; Kissick, W. A Guide to the Use of the ITS Irregular Terrain Model

in the Area Prediction Mode, 82-100; National Telecommunications and Information

Administration, April 1982.

20. Hufford, G. The ITS Irregular Terrain Model, version 1.2.2 The Algorithm. National

Telecommunications and Information Administration Institute for Telecommunication

Sciences, 1995.

21. Longley, A. G.; Rice, P. L. Prediction of Tropospheric Radio Transmission Loss over

Irregular Terrain, A Computer Method-1968; Environmental Sciences Services

Administration: Boulder, CO, June 1968.

22. U.S. Department of Commerce, Irregular Terrain Model (ITM) (Longley-Rice).

http://flattop.its.bldrdoc.gov/itm.html, [Online; accessed

26-April-2011].

16

23. OpenCL Overview. http://www.khronos.org/opencl/, [Online; accessed

14-November-2012].

24. Technology, B. COPRTH.

http://www.browndeertechnology.com/coprthr_stdcl.htm, [Online;

accessed 14-November-2012].

25. Benchmarks used the OpenCL implementation provided by the NVIDIA CUDA Toolkit v3.2.

26. Benchmarks used the OpenCL implementation provided by the AMD ATI Stream SDK v2.3.

27. Wang, F.; Sarabandi, K. A Physics-Based Statistical Model for Wave Propagation Through

Foliage. Antennas and Propagation, IEEE Transactions on 2007, 55 (3), 958–968.

28. Weissberger, M. A. An Initial Critical Summary of Models for Predicting the Attenuation of

Radio Waves by Trees; ESD-TR-81-101; Department of Defense Electromagnetic

Compatibility Analysis Center, July 1982.

17

List of Symbols, Abbreviations, and Acronyms

ARL U.S. Army Research Laboratory

CL computer layer

DEM digital elevation map

EMANE Extendable Mobile Ad-hoc Network Emulator

FLOP floating point operation

GPGPU General Purpose Graphic Processing Unit

GPU graphic processing unit

HIL hardware-in-the-loop

HPC high performance computing

HPCMP High Performance Computing Modernization Program

HPCMPO High Performance Computing Modernization Program Office

ITM Irregular Terrain Model

MADD multiply add

MANET mobile ad-hoc network

MNMI Mobile Network Modeling Institute

NIC network interface cards

OLSRd Optimized Link State Routing daemon

RF radio frequency

STDCL standard compute layer

18

NO. OF

COPIES ORGANIZATION

1

(PDF)

DEFENSE TECHNICAL

INFORMATION CTR

DTIC OCA

2

(PDF)

DIRECTOR

US ARMY RESEARCH LAB

RDRL CIO LL

IMAL HRA MAIL & RECORDS MGMT

1

(PDF)

GOVT PRINTG OFC

A MALHOTRA

1

(PDF)

DIRECTOR

US ARMY RESEARCH LAB

RDRL CIM C

BRIAN HEINZ

19

INTENTIONALLY LEFT BLANK.

20

